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Abstract

Making use of p - repeated integral operator in this paper we introduce a new class of complex- valued multivalent

harmonic function. An equivalent convolution class condition and a sufficient coefficient condition for this class is
obtained. It is proved that this coefficient condition is necessary for its subclass. Further, results on bounds, inclusion
relation, extreme points, a convolution property and a result based on the integral operator are obtained.
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Carlson and Shaffer operator, convolution, Wright generalized hypergeometric (Wgh) function, Gauss

hypergeometric function, incomplete beta function.

1. Introduction
A continuous complex-valued function f =u+iv defined in a simply connected domain D is

said to be harmonic in D if both u and v are real-valued harmonic in D. In any simply
connected domain DcC, f can be written in the form: f =h+g, where h and g are

analytic in D. We call h the analytic part and g the co-analytic part of f . A necessary and
sufficient condition for f to be locally univalent and orientation preserving in D is that

N (2)>|g'(2)] in D (see[8]). Let H denote aclass of harmonic functions f =h+g, which are

harmonic, univalent and orientation preserving in the open unitdisc A={z:|z|<1} sothat f is
normalized by f(0)=h(0)= f,(0)-1=0.

Duren, Hengartner and Laugesen [9] has given the concept of multivalent harmonic
functions by proving argument principle for harmonic complex valued functions. Using this
concept, Ahuja and Jahagiri [4], [5] introduced the family H(m), meN=(1,2,3.....) of all m
-valent, harmonic and orientation preserving functions in the open disk A={z]z|<1}. A
function f in H(m) can be expressed as:

f =h+0, (1.2)
where h and g are m-valent analytic functions in the open unit disk A of the form:

h(z)=2"+3Ya,2",9(2)= 3 b,2" |b, K1 meN={123..} (1.2)

n=m+1

Whereas TH (m) denote the subclass of functions f =h+g e H(m) such that
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h(z) = z" —Zaz ,9(2) = sz J|b, <1 (1.3)

n=m+1

Recently, several fractional calculas operators have found their applications in geometric function
theory. Many research papers [1, 2, 3] on harmonic functions defined by certain operators such as
Dziok and Srivastava operator [10], Hohlov operator [16], Carlson and shaffer operator [7] have
been published. The Wright’s generalized hypergeometric (Wgh) function [13, 17] for positive
real  numbers & (i=1.2,..,Q),b(=12,...,9) and for  positive  integers

S q
A(=12..,0),B (i=12..5) with 1+> B —> A >0 is defined by

_ . li[F(ai +An)z"
\P[E)al,Ai)lq,] : (14)
(I’ |)ls1 kOHF(b—FBn)nI
which is analytic in A |Ifl q=s+1.
In particular, if A =...=A =B, =..=B =1,
(@D, ) LIT@
q‘Ps((b_ " "?Zj =2 F((@)ai(b),si2), (L5)

[Ire)

where  F (&), (0).:2) =, K (a,..a,b,,...0;2) is the generalized hypergeometric (gh)

function defined by
9

T,
oF (@)1 (0),552) = lesl— (1.6)
k=0 (b) n!

The symbol (A1), is called Pochhammer symbol defined by
_T'(A+n) _

(D=1 D

The Hadmard product (convolution) *** of two power series converging in A is defined by

D> az" x> bz" =) abz"

n=0 n=0 n=0

The Erdélyi-Kober integral operator [13] I;'s, is defined for feR,, veR by
I;'Oh(z) =h(z),

= A(A+1)...(A+n-1).

1;,°h(z) = m_f(l—t)“tvh(ztﬁ)dtﬁ > 0.

With the help of the integral operator 1);°,an p -repeated integral operator I i ) @) [14], [15] for
analytic functions is defined as follows:
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Let h be an analytic function defined in A, for g eR,, 6 eR, U{0},v,eR, i=12,..,p,
an p -repeated integral operator is defined by

IVl’Oh(z) = h(2),
) "1h( 2)=1,h(2)

bl_ltvlh(ztﬁl)dt 5,>0,

F(5 )o

2 'h(2) = h(2)

1520 =] 1 "h)

i=1
= 122 |1 h(2) |, +6, >0,
and for peN={1,2,3,...},
|(” "Oh(z) = h(z), (1.7)

I (Vi)y(5i)h(z) - I Vi 6 h :
Bi.p = H B (2).).6,>0.
i=1 i=1

The image of power function z" [14, 15], under the operator I( ')( 0,

defined in (1.7), is given

by |jj2f“ "= 2", (1.8)
) F(vi +1+ﬁJ
Where 2,:=]] ! (1.9)

" F[vi +0, +1+ nj
B

for each n> rln_ax[—ﬂi (v, +1)].
<i<p

Involving p -repeated integral operators of the form (1.7), with the use of (1.8), an operator W
on the class H(m) is defined as follows:

2.Definition Let f =h+g begivenby (1.1), for peN={12,3,..}, BB R,
5,06, eR, U{0}, v,,v,>-1, i=12,..,p, anoperator

W EW{(V‘)' (%) (.‘/;)’ (5;)’}H (m) = H(m) is defined by
BB p
WF (2) = |‘V gy + - ; |<f32‘55)g(z), (1.10)

where for any n>m, A isgiven by (1.9) and
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) F[v; +1+n.]
Zo=11 b

. (1.11)
= F(v; +0, +1+n.]
The series representation of Wf (z) defined in(1.10) is given by
Wf (z) = z" +Z—az +Z nbz (1.12)

n=m+1 “Ym nmm

where A,,4.,n>m are given by (1.9) and (1.11) respectively. We see that Wf (z) given by
(1.12) can also be expressed as a convolution of two functions belonging to H(m) class by

Wt (z) = z" +Z—z * z a z +Z z

(/1 ‘P(z)j*h(z)+[ ‘P(Z)J*Q(Z)
where
(1,1),(vi+1+m,ij : (1,1),(v;+1+m.,i.j :
W(2)= ., BB, Cand W(2)= ¥, B i),
(Vi+é]+1+m,ij 'z (v,+5,+1+m.,iJ 'z
,Bi ﬂi 1p ﬂi ﬂ. 1,p

are Wgh functions and 4,4 ,n>m are given by (1.9) and (1.11) respectively. In general, we
denote Wgh functions

(k,l),(vi+1+w,ij X
B B,

p+l p _ ' ’
(Vi—l'é} +1+M,iJ 2z
ﬂi ﬂi 1,p

(k,l),(v; +1+(m+—k'—1),ij ;

Y, (2):=

B B,
p+1 p _
[v;+5;+1+(m+—k.1),i.] 1z
ﬂi ﬂi 1,p
for k=1,23.... This Wgh functions Involving p -repeated integral operators for harmonic
multivalent functions was widely discussed in [20].

¥, (2):=

Remark 1 Taking B =1=p8, v,=a-1-m, v,=c¢,-1-m, & =b-a, & =d,—c for
i=12,...,p, the operator Wf (z) defined by (1.10) reduces to the operator Qf (z) which is

Dziok -Srivastava type operator involving generalized hypergeometric functions  ,F  and is
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defined on H(m) by

p
Qf@):l}%%%%‘”“”ha) Ilrgg “”Jh(n (1.13)
=2"F(z)*h(2) + 2"F, (2) * 9(2),
Where F(z)= ,,,F, (1, (@), (0)y,52), F(2)= p+1Frl) ((L,(c)yp5 (d)y 5 2).
Remark 2 If we take, p =2,

=a-1-myv,=b-1-m,5 =1-a,6,=c,—b;v,=a,-1-m,v, =b,-1-m ,
5, =1-a, 6,=c,—b, and g =1=4 (i=1,2), the operator Wf (z) defined by (1.10) reduces
to the operator Hf (z) which is Hohlov type operator involving Gauss hypergeometric functions
,F, and is definedon H(m) by
. Tlg 10 _Ic,) (v)(a)

= Zm 2Fl(a1’bl;cl; Z) * h(Z)+ Zm 2Fl (aZ’bZ;CZ; Z) * g(Z)

Remark 3 Taking p=1,v=a-1-mdJ=¢—-a,v =a,-1-m ,6 =c,-b, and g =1=4
the operator Wf (z) defined by (1.10) reduces to Lf(z) which is Carlson Shaffer type operator
involving incomplete beta functions and is defined on H(m) by

L (2) = E )l(al‘l‘p)“l “h(z) + I(c,) ) Emie ) g (7) (1.15)
ai) (az)

=2",F(La;c;2)*h(z) + 2" ,F (1,a,;¢,:2) ¥ 9(2)

For the purpose of this paper, we define a class R°([(v,),(5,), 5} 7; u,t) of functions f e H(m)
if it satisfy the condition

R{(_ DD UGN ﬂ(vvf<z>)}>% (116

) )

where x>0, 0<t<l, 0<y<m, and z=re’(r<1,6eR) z a—e,z"

2

)

0%z .0 -
207 ,(Wf (z)) —%(Wf (z)) and (Wf (z)) =

It is special intrest beacuse for suitable choices of different operators defind in Remark (1-3) by
taking some particular values of parameters, p,v,,v;, 5,8, B, B We can define the following
subclasses.

1.Taking Qf (z) given by (1.13) in place of Wf (z) defined by (1.10), we can defined a class
QP ([(v),(8), B L 7; 1,t) which is emerge from class RP([(v,),(5), 5} u.t) (1.16) satisfying
the criteria
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@), o\ Q@) (Qf(z))‘} y
R (1= )=+ u(1-1) >
{ 2" (@") @) ) m
where Qf(z) is Dziok -Srivastava operator [11]. x>0, 0<t<1l, 0<y<m and

z=re’(r<1,0eR) z =%,z" = 2;22,(Qf (2)) :a_ae(m (2)) and (Qf (2)) = é; (Qf (2)).

2. Taking Hf (z) given by (1.14) in place of Wf (z) defined by (1.10) ,we can defined a class
HP (), (5), B} 7; 1.t) which is emerge from class RP([(v,),(5), B ] 7; u.t) (1.16) satisfying
the criteria

wlao @ 0 @) (Hf(zu))'}>1
N R R

where Hf (z) is Hohlov operator [16]. #>0, 0<t<1, 0<y<m and z=re"(r<1,0<R)

i=2 7= 2 i) :%(Hf (2)) and (Hf (2)) = a; (Hf (2))

00'" T 86%’

3. Taking Lf(z) given by (1.14) in place of Wf (z) defined by (1.10), we can defined a class
L® ([(»)),(8)), B.] 7; 1.t) which is emerge from class RP([(v)),(5), B} 7; ut) (1.16) satisfying
the criteria

- Lf(z) (Lf (2)) ('—f(z))"}>1
m{( T

where Lf(z) is Carlson Shaffer type operator [7]. x>0, 0<t<1, O0<y<m and

z=re’(r<1,0¢eR), 7 ;= 0z (Lf(2)) _%(Lf (2)) and (Lf(2)) = a; (L (2))

00’ 06"

Based on some particular values of x4 and t, where 4>0,0 <t<1, 0<y<m, the family
RP([(v),(5.), B.] 7; 4,t) produces a passage from the class of harmonic functions:

1 A(v). ). B L7 )= RP((v).(5). B} 7;0,t), consisting of functions f where

m{Wf n(nz)} ,0<y<m. (1.17)
YA m

2. B([(v).(5). BLrit)= RP([(v).(5), B]7:A,1), consisting of functions f where

{(1 t) W) ,, W) } >7 0<t<10<y<m. (1.18)

) @) fom
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3. C2(v)(8). B Ly 1)=R2((v).(5), B ] 7; 14,0), consisting of functions f where

SR{( —y)W‘;r(nZ)+y(\A£';rgz)))}>%, 1£>0,0<y<m (1.19)

4. DP((v).(8), B Ly 1)=RP((v,).(5), B} 7; 14.1), consisting of functions f where

ER{(l—,u)Wf 2, , Wt (@) } > % 1£>0,0<y <m. (1.190)

" ()
5. E2(().(5). BL7)=RP((v).(5), B} 7:0.1), consisting of functions f where

m{(Wf (2 )}>l, 0<y<m. (1.191)

@) | m
6. FP((v).(5),8L7)=RE(().(5), ] 7:1,1) consisting of functions f where

m{M}>l,03y<m. . (1.192)

@) ] m
Several sub-classes defined above by taking particular values of x and t on harmonic functions
involving certain linear operator have recently been studied in [6, 18, 12, 19, 21] etc.
In this paper, an equivalent convolution class condition is derived and a coefficient inequality is

obtained for the functions f =h+geH(m) to be in the class RP(((,),(5), B} 7; .t). Itis also

proved that this inequality is necessary for f =h+g to be in RP(((;).(5), 8] ut) class.

Further, based on the coefficient inequality, results on bounds,inclusion relations, extreme points,
convolution and convex combination and on an integral operator are obtained.

2 .Coefficient Inequality
Theorem 1 Let #>0, 0<t<1, 0<y<m,meN. If the function f =h+geH(m) (where

h and g are of the form (1.2)) satisfies

2 ‘m2+y(n—m)(tn+m)‘ y) 2 ‘m2+y(n+m)(tn—m)‘ p)
Zulg |+ Zulp | <1, 2.1
2wy AR ey P @

then f issense-preserving, harmonic multivalentin A and f eRP([(v,),(5), B }7; u.t).

Proof. Under the given parametric constraints, we have
n ‘mz +y(n—m)(tn+m)‘ A, n ‘mz +y(n+m)(tn—m)‘ i
—< —Land—< —
m m(m—y) y) m m(m—y) y)

m

,n>m. (2.2)

m

Thus, for f =h+geH(m), where h and g are of the form (1.2), we get
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W@z - a2l 1- 3 M|

n=m+1 n= m+1m

m_l_ = M +,u(n—m)(tn+m)‘ A,
>m|z| 1_n=2m+l . Zan|]
> "™ im T P, |] Yo (g @)
which  proves that f(z) is sense preserving in A . Now to show that
f eRP([(v),(5), B} 7;1,1), We need to show (1.16), that is
SR{( - ,u)Wf (2) | -1 Wt (2)) ny (Wfrgz))} Y e, (2.3)
2" (@) @) | m

Suppose  A(z) = R{(1- )Wf(z) u(1- t)(Wf(Z)) + 1t (Wf(z”)) > 7

: (@) @) ) m
It is suffices to show that L)Z_l <1

A(z)—%Jrl

Series expansion of A(z) is given by

1§ S Bt S 2

and we have ‘A(z)—%+4—|A(Z)—H

=2(1‘%)+n;%{““(%‘j(; j} me3 e i 'y
) ”ilj_;{l+ﬂ(%_ j(tan+l]}anzn_m + Zj_n{l"‘ IU(E +1)(tan—l)}bn2n2_m

1 2 A tn
>—|2(m=y)- m+ puln-m) —+1 z" "
m{( - - ( )(m j .

n=m+1 ““m
> ﬂ'n tn M -m
—n:szm+y(n+m{E—lj z |z ‘
= A ) t -
- n;uﬂm m+ z(n— m)( +1j —r;ﬁ m+,u(n+m)(an— j |z ”z @
{Z(m 7)— 22 m+ u(n— m)( +1j
n= m+1 m
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A, (tn j
—m+ u(n+m) —-1 b,
m

m

zm@
>0

by (2.1) when z=r —1 and this proves Theorem 1.

We next show that the above sufficient coefficient condition is also necessary for functions in the

class R2((v).(6). B} 7 m.t)

Theorem 2 Let x>0, 0<t<1, 0<y<mmeN.and let the function f=h+geH(m) be
such that h and g are given by (1.3). Then feRP([(v)).(5,), B ]7;t) if and only if (2.1)

holds. The mequallty (2.1) is sharp for the function given by
f(z)=2z" m(m—7)

pxof2"

n=m+1

m(”“?’) ' |y |z_“,

n=m

Z:O=m+l|xn| + Z::m| yn| =1.

(2.4)

Proof. The if part, follows from Theorem 1. To prove the "only if part” let f = h+§ € I:|(m) be

such that h and g are given by (1.3) and f e RP([(v;),(5)), 8] 7; 1) then for z=re” in A
we obtain
Wf (2) Wf (z Wf (2))
2" (@ ) @) | m
1 Vi Vs Vi Vi |
N X )(‘”h(z)+ ;L‘(S)g(z) (1 |( ”‘”h( )} (/1 I; )(5)9(2))
=R (1— y)Lm m +u(1-t m
(- u) = u(A-1) —
of 1 00 " 1 (v)(a) o 1 | DD 1 o) |
z (l Iﬂi-P h(z)j +z(/1 I, h(z)J z (ﬂ, Ao g(z)} (ﬂ. Iﬂ;'p g(z)]
+m IUt - 2,m - + - 2,m -
m®z m®z
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b,|z

ol =y
By

n=m m

>1z

nm+1 m

RS

U "

>

SR

The above inequality must hold for all zeA. in particular z=r —1 yields the required
condition (2.1). Sharpness of the result can easily be verified for the function given by (2.4).

As a special case of Theorem 2, we obtain the following corollaries.

Corollary 1 For class (1.17) we can write, f =h+g e AP(((v,),(5,)), B }7.t) ifandonly  if

> m A = omo A
—a,|+ ) ———=b,[<1 holds.
24T Sy
Corollary 2 For class (1.18) we can write, f =h+g EBP([(V),(5i),ﬂi];7, t) if and only if
2 ‘m2+(n—m)(tn+m)‘;b |

n=m-+1 m(m - 7’) A (m 7/)

—|b |<1, holds.

Corollary 3 For class (1.19) we can write, f =h+g e énf([(vi), (N ];y;,u,) if and only if
& ‘mz +y(n—m)m‘ 1
—la, |+

Zm:1 mm-y) 4, | Zn; m(m-7)
Corollary 4 For class (1 190) we can write, f =h+g e Drﬁ ([(v),(5), B 7; 12,) ifand only if

‘m +u(n® - ‘m +u(n®*—m?)| 4

—*1b,| <1, holds.
Z 7] IIZ o
Corollary 5 For class (1.191) we can write, f =h+Qge E,E ([(vi), (5,), 5, ];7/) if and only if
S R U
—la, |+ b,[<1, holds.

i) 4 Zinlen—) b
Corollary 6 For class (1.192) we can write, f =h+g e F([(+,),(5,), 8, 7) if and only if

0 2 © 2
> n—i|an|+z(n— lb,| <1, holds.

n=m+1 m(m—}/) ﬂ“m m{m 7/)

—|b |<1, holds.

3 Inclusion Relation
The inclusion relations between the classes B ([(v,),(5), 8, 7;t) and AP([(,).(S,), B }y.t) for
different values of x are not so obvious. In this section we discuss the inclusion relation between

above mentioned classes.
Theorem 3 for ne{1,2,3..} and 0<y <m, we have

@) BL(v). ). B rit)e A (). (8), B 7t
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(i) BR(0).3) Bl rit) = RE().(6). B im0 < u <t
(i) Ra(@). () B Lriuwt) B (). () B L rith =1
Proof. (i) Let f(z) e B2([(),(5,), B }7;t). in view of corollaries 1 and 2, we have

Soomo A 5 oomo A,
2 oy Bl Lol

n=m+l(m_7)/1m n=m(m_7/)ﬂ'
2 ‘m2+(n—m)(tn+m)‘,1

_n:m+l m(m—ﬂ/) ﬂm| | (m 7) _|b|<1
(iiLet (z)eBP(((v). (5).B]7; t)For 0< 1 <1, we can write
‘m +u(n— m)(tn+m)‘ A ‘m + u(n+m)(th— m)‘ g
nzm:+1 mm-y) A Z m(m - 7) A
‘m +(n- m)(tn+m)‘
—b 1
B e R NP e i
by corollary 2 and (ii) foIIows from Theorem 2
(iii) By the Theorem 2, if x4 >1,we have
‘m +(n- m)(tn+m)‘ A, ‘m +(N+m)(th— m)‘ ﬂ
nzm:+1 mm-y) 4 Z (m N g
‘m +u(n— m)(tn+m)‘
—b 1
nzm:+1 m(m—y) | | m(m - 7) b <

Therefore the result follows from corollary g

4 .Bounds

Our next theorems provide the bounds for the function in the class RP([(v,).(5), B ] 7: 1.t)
which are followed by a covering result for this class.

Theorem 4 Let 4>0, 0<t<1l, O<y<mmeN. if f=h+geH(m) where h and g
are of the form (1.3) belongs to the class RP(((v,),(6)), B} 7; u.t), then for |z|=r <1,

mrmt | 1+ 2u(t-1)
f(2) <+ 1- by | 4.1
W (2)]< (L oy ™+ L (4.0
m
_ m_ m _ 1+ Zlu(t _1) m-+1
And Wf (2)] > (1—[b,|)r —— |1 7 [ (4.2)
m

The result is sharp.
Proof. Let f eR”([(v)),(5,), B} 7: t), then on using (2.1), related to (1.3), by (1.10), we get
for [z|=r<1,
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= (2 y)
W ()] <(@+[b,))rm+ > (/1—"|an|+7”|bn|]r“

n=m+1 m

<[+, 41 S [%|an|+%”|bn|j

n=m+1 m
mit [ w 2 —m(t w |m2 tn — :
§(1+|bm|)r”‘+mr 3 ‘m +u(n m)(n+m)‘ﬁ|an|+ Z‘m + p(n+m)(tn—m) i|bn|
m+1| .5 m(m _7’) A n=m m(m _7/) A

m+1

mr 1_1+ 2u(t-1) |bm|
m+1 4

£(1+|bm|)rm +

m
which proves the result (4.1). The result (4.2) can similarly be obtained. The bounds (4.1) and (4.2)
are sharp for the function given by

f(2)=2" 4| 2"+ |1 2D s

(m+1)7med 1-~
A m
_r
for ©>0, 0<t<1, 0<y<m, [o,[<—D1—.
1+ 2u(t-1)

Corollary 7 Let x>0, 0<t<1, 0<y<mmeN. If f =h+geH(m) with h and g are of
the form (1.3) belongs to the class RP([(v),(5,), B} 7; 1), then

m_, m(l+2u(t-1))

m+1 (m+1)(1—7J
m

Theorem 5 Let >0, 0<t<1, O0<y<m,meN and let AMSmin(ﬁ,ﬁJ, n>m+1. If

m m

~1|b,|t = f(A)

oo <1-

f=h+geH(m), where h and g are of the form (1.3), belongs to the class
Ry (04).(6). AL 7iaet), then for g=r<1,
m m l+2/u(t_1) m+1
f <({l+1|b 1- b : .
|f(2) (+| m|)r +(m+1)ﬂ“m+l Ty b |F (4.3)
m
i m 1+2u(t-1 .
And |f(2)|> -, |)r | * ”(y )b, (4.4)
m+1 1-4+
m
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The result is sharp.
Proof. Let f e RP([(v;),(6,), 4} 7; .t) then on using (2.1), from (L.3), we get for |z|=r <1,

£ @) < @r o™+ 3 (o] +]by )" < @b, ™ +r™* 3 (2 |+ b))

n=m+1 n=m+1

m+l o !
b e+ 3 (s e

m+1 n=m+1 A

m m

mr™t e [m?+ u(n—m)(tn+m)| 4
3 \

<\ " —
SR e v P e o Nl
B ‘m2+y(n+m)(tn—m) 1
b

r;n m(m—]/) ﬂ’m | ”|]

n mr™* 1+2u(t-1 -
§(1+|bm|)r +(m+1)i 1- 1ﬂ(7/ )|bm| rm,

m+1 -

m

which proves (4.3). The result (4.4) can similarly be obtained. The bounds (4.3) and (4.4) are sharp
for the function given by

m+1

f(z)=2" +b, 2" + (mTrl)}t 1_“2”(;‘1) Io,| 2™
m+1 1_E
4/
for |b,| < ———T .
1+2u(t-1)

m m

Corollary 8 Let #>0, 0<t<1, 0<y<m,meN and let /‘tm+13min(ﬁ,@), n>m+1. If

f=h+g eH(m), where h and g are of the form (1.3), belongs to the class
RE((v,),(8.), B} 7: s,t), then for |z|=r<1,, then

m_, m(L+2u(t—1))
M+ D | (s 1)(1— VJAM

oo <1- ~1|b,|t = f(A)

m

5. EXTREME POINTS
In this section, we determine the extreme points for the class R?([(v,),(5,), 8.} 7; 1.1).

Theorem 6 let f =h+geH(m) and
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h (z)=z",h(z)=2z"- m(m—7) 2" (n>m+1),
‘mz + p(n—m)(tn +m)

.
m(m-y)

‘mz + g(n+m)(tn—m)

—2"(n>m)

9,(2)=2"+

T
then the function feRP(((v),(5).B]r;mt) if and only if it can be expressed as
f(2)=3 (%h,(2)+Y,0,(z)) where x,>0,y,20 and > " (x,+Y,)=1. In particular, the

extreme points of RP([(v,),(5)), 8}y u.t) are {h.} and {g, )
Proof. Suppose that  f (z) = i(xnhn(z) +v.9,(2))
Then, _

f(z):i(xn+yn)zm— > m(m—7) X z"

n

T’ 4 u(n-m)(en-+ m)]
'y mm-y)
n=m ‘mz + u(n+m)(tn —m) i—"
o m(m-y) ann_'_i m(m-) —y. 2"
n=mlm? 4 (N —m)(tn +m) = "= Im? + g(n+m)(tn —m) T
Ry (0:).(3). Bl rimt)
by Theorem 2, since,
i ‘m2+y(n—m)(tn+m)‘£ m(m—y) )
n=m+l m(m-y) z ‘mz + u(n—m)(tn+m) jv” n
£, |m? + u(n+my(tn—m)| m(m-7)
+Z‘ m(m—y) 1 P
h=m 4 ™| Im? + (N +m)(th —m) /1*”
= i X, -|-§:yn =1-x, <1l
n=m+1 n=m
Conversely, let  f e RP([(v,),(5), B]7;.t) and let
|an| _ m(m - ]/)Xn and bn — m(m _y)yn

‘mz + u(n—m)(tn+m)

‘mz + u(n+m)(tn—m) j‘

.

m
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and

- Z X, — Zyn’
n=m-+1 n=m

then, we get

J=2"= Y [afe’ +ZlblZ

n=m+1

=h,(z)- i (m 7) al

X, Z

n i m(m_ﬂ)yn : yn;

=h,@)+ 3 (h,@)-h, @)K, + i(gn(z)—hm(z))yn
= hm(z)(l— i X, —iynj Z h, (2)x, + Zg (2)Y,

o0

= 2 (%1 (2) +¥,9.(2)).

This proves the Theorem 6.

6 .Convolution and Convex Combinations

In this section, we show that the class I-:inﬁ’ ([(vi), (N ]; Vi y,t) is invariant under convolution and
convex combinations of its members.

Let the function f =h+geH(m) where h and g are of the form (1.3) and
F(z)=2z"- Z —|An|z +Z—|B 12" e H(m). (6.1)

nm+l m n=m m

The convolution between the functions of the class ﬁ( ) is defined by

(f*F)z)= f(z)*F(z)=2" - Z —|a Az +Z—|b |;

n= m+l m n=m m
Theorem 7 Let x>0, 0<t<l, O<y<mmeN, if feR’((v).(5)8}7,ut) and
FeR2((v).(3). B}y mt), then fxFeRM(().(5). 8}y mt)
Proof. Let f =h+geH(m),where h and g are of the form (1.3) and F e H(m) of the form
6.1 bein R2(a], . [n) .4 k) class. Then by theorem (2), we have

m*+ u(n—m)(tn+m)| 4
> m

D RN AP S e
which in view of (2.2), yields

|B|<1 <1
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n
B,| < m(m - 4) . s%si,nzm.
Hence, by Theorem 2,

- ="1b,B,
D s B NAC § (- y) Fhe,

‘m +y(n m)(tn+m)‘ A,

< —la, |+ b,
nzm;l m-y) . | Zr:n m(m-y) im| |

<1
which proves that f *F e RP([(v,),(5)), B ] 7; .t).

We prove next that the class ﬁrﬁ([(vi), (%)), 5, ];7;,u,t) is closed under convex combination of its
members.

Theorem 8: Let x>0, 0<t<1, 0<y<m,meN, theclass R*([(;),(5), 8] ut) isclosed
under convex combination.

Proof. Let f, e RP(((),(6), B} 7;u.t) jeN be of the form

)=z —Z‘Ajnz +Z‘ in

Then by Theorem 2, we have for jeN,

> A s

n=m+1 (m 7/) n=mn=m 7) j’
For some 0<t, <1, let Z t, =1, the convex combmatlon of f,(z ) may be written as

Z;tj fj z)=2"- Z th‘Aj’n z”+Zth‘Bj’n 7"
=

n=m+1 j=1 n=m j=1
Now by (6.2),

> Zt Al + 2 Zt B

n=m+1 (m 7 m j=1 = (m }/ m j=1

,jeN.

‘m +u(n— m)(tn+m)‘ ,1

<1, (6.2)

j,n

:it Z ‘m + u(n— m)(tn+m)‘

j=1 n=m+1 (m 7/) m

1A

Zt =1

n=m (m 7) ﬁim " =1
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and so again by Theorem 2, we get ZT:}J' f, (z)e RP ([al]p’q : [yl]rys;}/;y,t) This proves the result.

7 .Integral Operator
Now we examine a closure property of the class RP([(,).(5,). B ]7;ut) involving the
generalized Bernardi Libera-Livingston Integral operator L which is defined for

f =h+geH(m) by

L,.(f)= C:_m [t thdt+ 21 [ g (tdt, e > -,z e A, (7.1)
0 0

Theorem 9 Let x>0, 0<t<l, O<y<mmeN, if feRP(().(5),B}yimt) then
Loe(F) € R2((1), (8. B 7 a1.t).

Proof. Let f :h+ge|:|(m), where h and g are of the form (1.3), belongs to the class
RP(((v),(5), B ] 7; ). Then, it follows from (7.1) that

L. (f)=2"— Z [c+mJ|a 2 +Z(C+mj|b o

L=\ c+n c+n

eRE(().(5). B Ly 1)
by (2.1), since,

5 m +ﬂ(n—m)(tn+m)‘ﬁ(c+mj|an|+i‘m +ﬂ(n+m)(tn—m)‘/1_'n[c+mj|b |

e m(m—y) A \c+n =~ (m—y) A lc+n
‘m +u(n—m)(tn+m)| 4 ‘m + u(n+m)(tn— m)‘ g
b
nzm:+1 m(m-y) | ol Z m(m-y) | l
<1.

This proves the result.
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