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Abstract 
 

Making use of p - repeated integral operator in this paper we introduce a new class of complex- valued multivalent 

harmonic function. An equivalent convolution class condition and a sufficient coefficient condition for this class is 

obtained. It is proved that this coefficient condition is necessary for its subclass. Further, results on bounds, inclusion 

relation, extreme points, a convolution property and a result based on the integral operator are obtained.  
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1. Introduction 

A continuous complex-valued function ivuf =  defined in a simply connected domain D  is 

said to be harmonic in D  if both u  and v  are real-valued harmonic in D . In  any simply 

connected domain ,CD   f  can be written in the form: ,= ghf   where h  and g  are 

analytic in D . We call h  the analytic part and g  the co-analytic part of f . A necessary and 

sufficient condition for f  to be locally univalent and orientation preserving in D  is that 

)(>)( zgzh ''  in D  (see [8]). Let H denote a class of harmonic functions ,= ghf   which are 

harmonic, univalent and orientation preserving in the open unit disc 1}|<:|{= zz  so that f  is 

normalized by 0.=1(0)=(0)=(0) zfhf  

Duren, Hengartner and Laugesen [9] has given the concept of multivalent harmonic 

functions by proving argument principle for harmonic complex valued functions. Using this 

concept, Ahuja and Jahagiri [4], [5] introduced the family ),(mH  .)(1,2,3....=Nm  of all m

-valent, harmonic and orientation preserving functions in the open disk 1}.|<|:{= zz  A 

function f  in )(mH  can be expressed as: 

,= ghf    (1.1) 

where h  and g  are m -valent analytic functions in the open unit disk   of the form:  
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Whereas )(mTH  denote the subclass of functions )(= mHghf   such that 
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Recently, several fractional calculas operators have found their applications in geometric function 

theory. Many research papers [1, 2, 3] on harmonic functions defined by certain operators such as 

Dziok and Srivastava operator [10], Hohlov operator [16], Carlson and shaffer operator [7] have 

been published. The Wright’s generalized hypergeometric (Wgh) function [13, 17] for positive 

real numbers )1,2,...,=(),1,2,...,=( sibqia ii   and for positive integers 

)1,2,...,=(  ),1,2,...,=( siBqiA ii  with 01
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which is analytic in   if 1.= sq  

In particular, if 1,==...===...= 11 sq BBAA  
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where );,....;,...();)(;)(( 111,1, zbbaaFzbaF sqsqsiqisq   is the generalized hypergeometric (gh) 

function defined by 
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The symbol n)(  is called Pochhammer symbol defined by 

1).1)...((=
)(
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The Hadmard product (convolution) ’ ’ of two power series converging in   is defined by 
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The Erdélyi-Kober integral operator [13] 



,I , is defined for ,R  R  by 

),(=)(,0 zhzhI  

0.>,)()(1
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 dtzthttzhI 

   

With the help of the integral operator 



,I , an p -repeated integral operator 

)(),(

,
ii

p
i

I


  [14], [15] for 

analytic functions is defined as follows: 
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Let h  be an analytic function defined in ,  for ,Ri  {0}, Ri ,Ri  ,1,2,...,= pi  

an p -repeated integral operator is defined by 
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The image of power function nz  [14, 15], under the operator ,
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  defined in (1.7), is given 
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for each 1)].([>
1
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maxn   

 

Involving p -repeated integral operators of the form (1.7), with the use of (1.8), an operator W  

on the class )(mH  is defined as follows: 

 

2.Definition  Let ghf =  be given by (1.1), for },{1,2,3,...=Np  ,, R'
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where for any ,mn   n  is given by (1.9) and 
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The series representation of ),(zWf  defined  in( 1.10) is given by 
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where mn'

nn ,,  are given by (1.9) and (1.11) respectively. We see that )(zWf  given by 

(1.12) can also be expressed as a convolution of two functions belonging to )(mH  class by 
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for 1,2,3...=k . This Wgh functions Involving p -repeated integral operators for harmonic 

multivalent functions was widely discussed in [20]. 

 

Remark 1 Taking ,=1= '

ii   ,1= maii   ,1= mci

'

i   ,= iii ab   ii

'

i cd =  for 

,1,2,...,= pi  the operator )(zWf defined by  (1.10) reduces to the operator )(zf  which is 

Dziok -Srivastava type operator involving generalized hypergeometric functions pp F1  and is 
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defined on )(mH  by 
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,)()()()(= 11 zgzFzzhzFz 'mm   
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Remark 2  If we take, 2,=p

mbmabcambma ''  1=,1=;=,1=,1=,1= 2221112111211   ,  

22221 =,1= bca ''    and '

ii  =1=   ,1,2=i  the operator )(zWf  defined by (1.10) reduces 

to the operator )(zfH  which is Hohlov type operator involving Gauss hypergeometric functions 

12 F  and is defined on )(mH  by 
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Remark 3 Taking maacmap '  1=,=,1=1,= 2111   22=, bc'   and '

ii  =1=  

the operator )(zWf  defined by (1.10) reduces to )(zfL  which is Carlson Shaffer type operator 

involving incomplete beta functions and is defined on )(mH  by 
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It is special intrest beacuse for suitable choices of different operators defind in Remark (1-3) by 

taking some particular values of parameters, ,p
'
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ii  ,,,,,  we can define the following 

subclasses. 

  

  1.Taking )(zf  given by (1.13) in place of )(zWf  defined by (1.10), we can defined a class 
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the criteria  
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where )(zf  is Dziok -Srivastava operator [11]. 0,  1,0  t  m<0   and 
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 2. Taking )(zfH  given by (1.14) in place of )(zWf  defined by (1.10) ,we can defined a class 
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where )(zfH  is Hohlov operator [16]. 0,  1,0  t  m<0   and  ,1,<= R rrez i  

=,= ''' z
z

z



    )(=)(,

2

2

zfzf
z '

HH
 






 and    .)(=)(

2

2

zfzf
''

HH
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where )(zfL  is Carlson Shaffer type operator [7]. 0,  1,0  t  m<0   and 
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Based on some particular values of   and ,t  where 0,0  1, t  ,<0 m  the family 
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Several sub-classes defined above by taking particular values of   and t  on harmonic functions 

involving certain linear operator have recently been studied in [6, 18, 12, 19, 21] etc. 

In this paper, an equivalent convolution class condition is derived and a coefficient inequality is 

obtained for the functions )(= mHghf   to be in the class   tR iii

p

m ,;;),(),(  . It is also 

proved that this inequality is necessary for ghf =  to be in   tR iii

p

m ,;;),(),(
~

  class. 

Further, based on the coefficient inequality, results on bounds,inclusion relations, extreme points, 

convolution and convex combination and on an integral operator are obtained. 

 

2 .Coefficient Inequality 
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Thus, for ),(= mHghf   where h  and g  are of the form (1.2), we get 
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which proves that )(zf  is sense preserving in  . Now to show that 
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We next show that the above sufficient coefficient condition is also necessary for functions in the 

class   tR iii

p

m ,;;),(),(
~

  

Theorem 2 Let 0,  1,0  t  .,<0 N mm and let the function  mHghf
~

=   be 

such that h  and g  are given by (1.3). Then   tRf iii

p

m ,;;),(),(
~

  if and only if (2.1) 

holds. The inequality (2.1) is sharp for the function given by  

 
  n

n

m

nmn

m zx

mtnmnm

mm
zzf








))((

=
21= 


 





 (2.4) 

 
,

))((2=

n

n

'

m

'

nmn

zy

mtnmnm

mm















   

 1.=
=1= nmnnmn

yx 



   

 

Proof. The if part, follows from Theorem 1. To prove the "only if part" let  mHghf
~

=   be 

such that h  and g  are given by (1.3) and   tRf iii

p

m ,;;),(),(
~

  then for irez = in   

we obtain  

 
 

 
 

  mz

zWf
t

z

zWf
t

z

zWf
''m

''

'm

'

m


 >

)()(
)(1

)(
1













  

 

 















m

'
i

'
i

p'
i

'

m

ii
p

i
m

z

zgIzhI )(
1

)(
1

1=

)(),(

,

)(),(

,











































m

'
'
i

'
i

p'
i

'

m

'

ii
p

i
m

mz

zgIzzhIz

t

)(
1

)(
1

)(1

)(),(

,

)(),(

,










  

  

 



















































































m

'
'
i

'
i

p'
i

'

m

''
'
i

'
i

p'
i

'

m

m

ii
p

i
m

''

ii
p

i
m

zm

zgIzzgIz

zm

zhIzzhIz

t
2

)(),(

,

)(),(

,

2

2

)(),(

,

)(),(

,

2 )(
1

)(
1

)(
1

)(
1 
















  

 



 

Vimlesh Kumar et al., Vol.1, No.1 , pp. 47-64, 2017 

56 

mn

n

m

n

mn

za
m

tn

m

n 





















  1111

1=




 mn

n'

m

'

n

mn

zzb
m

tn

m

n 



















 111

=





 

  

m


>  

The above inequality must hold for all .z  in particular 1= rz  yields the required 

condition (2.1). Sharpness of the result can easily be verified for the function given by (2.4).  

 

As a special case of Theorem 2, we obtain the following corollaries. 
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3 Inclusion Relation 

The inclusion relations between the classes   tB iii

p
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~
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different values of   are not so obvious. In this section we discuss the inclusion relation between 

above mentioned classes.  

Theorem 3 for  1,2,3..n  and ,<0 m  we have  
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by corollary 2 and (ii) follows from Theorem 2 
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Therefore the result follows from corollary 2.  

 

4 .Bounds 

Our next theorems provide the bounds for the function in the class   tR iii
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which are followed by a covering result for this class. 
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The result is sharp.  

Proof. Let    ,,;;),(),(
~

tRf iii

p

m   then on using (2.1), related to (1.3), by (1.10), we get 

for 1,<= rz   
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which proves the result (4.1). The result (4.2) can similarly be obtained. The bounds (4.1) and (4.2) 

are sharp for the function given by 
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The result is sharp.  
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which proves (4.3). The result (4.4) can similarly be obtained. The bounds (4.3) and (4.4) are sharp 

for the function given by 
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Corollary 8  Let 0,  1,0  t  N mm,<0   and let ,,min1 
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5. EXTREME POINTS 

In this section, we determine the extreme points for the class   .,;;),(),(
~

tR iii

p

m   

Theorem 6  let  mHghf
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=   and  



 

Vimlesh Kumar et al., Vol.1, No.1 , pp. 47-64, 2017 

60 

 
 ,1

))((

=)(,=)(
2






 mnz

mtnmnm

mm
zzhzzh n

m

n

m

n

m

m







 

 
 ,

))((

=)(
2

mnz

mtnmnm

mm
zzg n

'

m

'

n

m

n 












 

then the function   tRf iii

p

m ,;;),(),(
~

  if and only if it can be expressed as 

 )()(=)(
=

zgyzhxzf nnnnmn



 where 00,  nn yx  and   1.=

= nnmn
yx 


 In particular, the 

extreme points of   tR iii

p

m ,;;),(),(
~

  are  nh  and  .ng   

Proof. Suppose that   )()(=)(
=

zgyzhxzf nnnn

mn




 

Then, 

 
  n

n

m

nmn

m

nn

mn

zx

mtnmnm

mm
zyxzf








))((

=)(
21== 


 







 

  n

n

'

m

'

nmn

zy

mtnmnm

mm








))((2= 






 

  n

n

m

nmn

m zx

mtnmnm

mm
z








))((

=
21= 


 





  n

n

'

m

'

nmn

zy

mtnmnm

mm








))((2= 






 

  tR iii

p

m ,;;),(),(
~

  

by Theorem 2, since,  

 
 































n

m

nm

n

mn

x

mtnmnm

mm

mm

mtnmnm
















))((

))((

2

2

1=

 

 
 






























n

'

m

'

n

'

m

'

n

mn

y

mtnmnm

mm

mm

mtnmnm
















))((

))((

2

2

=

 

1.1==
=1=






mn

mn

n

mn

xyx  

Conversely, let   tRf iii

p

m ,;;),(),(
~

  and let  

   

'

m

'

n

n
n

m

n

n
n

mtnmnm

ymm
b

mtnmnm

xmm
a















))((

=and

))((

=
22








 



 

Vimlesh Kumar et al., Vol.1, No.1 , pp. 47-64, 2017 

61 

and  

,1=
=1=

n

mn

n

mn

m yxx 




  

then, we get  

 
n

n

mn

n

n

mn

m zbzazzf 





=1=

=  

  n

n

m

n

n

mn

m zx

mtnmnm

xmm
zh








))((

)(=
21= 


 





 

  n

n

'

m

'

n

n

mn

zy

mknmnm

ymm








))((2= 






 

    nmn

mn

nmn

mn

m yzhzgxzhzhzh )()()()()(=
=1=

 




 

nn

mn

nn

mn

n

mn

n

mn

m yzgxzhyxzh )()(1)(=
=1==1=


















  

 .)()(=
=

zgyzhx nnnn

mn




 

This proves the Theorem 6.  

 

6 .Convolution and Convex Combinations 

In this section, we show that the class   tR iii
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  is invariant under convolution and 

convex combinations of its members. 
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We prove next that the class   tR iii
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  is closed under convex combination of its 

members. 
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and so again by Theorem 2, we get       .,;;,
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7 .Integral Operator 

Now we examine a closure property of the class   tR iii
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This proves the result.  
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